Каким методом в металлургии получают алюминий. Производство алюминия технической чистоты

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Магнитогорский Государственный Технический Университет

им. Носова

Кафедра металлургии черных металлов

Реферат по дисциплине «История металлургии»

МЕТАЛЛУРГИЯ АЛЮМИНИЯ


Аннотация

Рассмотрена тема "Металлургия алюминия", описаны основные свойства этого металла. Кратко изложена история открытия алюминия, возможные способы его получения и применения в различных отраслях промышленности.


Введение

1. Свойства алюминия

2. Применение алюминия

3. Сырые материалы

4. Производство глинозема

5. Электролитическое получение алюминия

6. Рафинирование алюминия

Заключение

Список использованной литературы


Введение

Слово «металлургия» происходит от греч.:

metalleuо – выкапываю, добываю из земли;

metallurgeo – добываю руду, обрабатываю металлы;

metallon – рудник, металл.

Это слово означает область науки и техники, охватывающую процессы обработки добытых из недр руд, получение металлов и сплавов, придание им определенных свойств.

В древности, в средние века и сравнительно недавно, вплоть до времени М.В.Ломоносова, считалось, что существует 7 металлов (золото, серебро, медь, олово, свинец, железо, ртуть).

В 1814 г. шведский химик Й.Берцелиус предложил использовать буквенные знаки, которыми пользуется весь мир, за редкими исключениями.

Сегодня науке известно более 80 металлов, большинство из них используется в технике.

В мировой практике сложилось деление металлов на черные (железо и сплавы на его основе) и все остальные – нечерные (Non-ferrous metals, англ.; Nichtei-senmetalle, нем.) или цветные металлы. Металлургия часто подразделяется на черную и цветную. В настоящее время на долю черных металлов приходится около 95% всей производимой в мире металлопродукции.

В технике принята также условная классификация, по которой цветные металлы разделены на «легкие» (алюминий, магний), «тяжелые» (медь, свинец и др.), тугоплавкие (вольфрам, молибден и др.), благородные (золото, платина и др.), редкие металлы.

Доля продукции, изготовленной с использованием черных и цветных металлов, в настоящее время составляет 72-74% валового национального продукта государства. Можно утверждать, что металлы в XXI в. останутся основным конструкционными материалами, так как по своим свойствам, экономичности производства и потребления не имеют себе равных в большинстве сфер применения.

Из ~ 800 млн. т потребляемых металлов ~ 750 млн. т – сталь, 20-22 млн. т – алюминий, 8-10 млн. т – медь, 5-6 млн. т – цинк, 4-5 млн. т – свинец (остальные - < 1 млн. т).

Из наиболее ценных и важных для современной техники металлов лишь немногие содержится в земной коре в больших количествах: алюминий (8,8%), железо (4,65%), магний (2,1%), титан (0,63%).

К рудным месторождениям легких металлов обычно относят руды, содержащие алюминий; основной поставщик алюминия – бокситы, а также алуниты, нефелины и раз личные глины. К рудным месторождениям цветных металлов относятся месторождения меди, свинца и цинка, кобальта, никеля, сурьмы. Запасы металлов в наиболее крупных из них достигают от десятков до сотен млн. т, при обычном содержании металлов в руде – единицы процентов.

Масса добываемых материалов во много раз превышает количество содержащихся в руде металлов и в подавляющем большинстве случаев из природных руд экономически невыгодно непосредственно извлекать полезные компоненты.

Археологические раскопки свидетельствуют о том, что знакомство человека с металлами относится к временам, весьма удаленным от нас. Считается, что первые изделия из бронзы получены за 3 тыс. лет до н.э восстановительной плавкой смеси медной и оловянной руд с древесным углем. Значительно позже бронзы стали изготовлять добавкой в медь олова и других металлов (алюминиевые, бериллиевые, кремненикелевые и др.). В настоящее время наиболее распространены алюминиевые бронзы (5-12% Al) с добавками железа, марганца и никеля.

В настоящее время металлургическое производство является одним из приоритетных отраслей народного хозяйства.


1. СВОЙСТВА АЛЮМИНИЯ

Алюминий был впервые получен датским физиком Х.Эрстедом в 1825 г. Название этого элемента происходит от латинского алюмен, так в древности назывались квасцы, которые использовали для крашения тканей.

Алюминий обладает многими ценными свойствами: небольшой плотностью – около 2,7г/см 3 , высокой теплопроводностью – около 300 Вт/(м. К) и высокой электропроводностью 13,8 . 10 7 Ом/м, хорошей пластичностью и достаточной механической прочностью.

Алюминий образует сплавы со многими элементами. В расплавленном состоянии алюминий жидкотекуч и хорошо заполняет формы, в твердом виде он хорошо деформируется и легко поддается резанию, пайке и сварке.

Сродство алюминия к кислороду очень большое. При его окислении выделяетсябольшое количество тепла (~ 1670000 Дж/моль). Тонкоизмельченный алюминий при нагревании воспламеняется и сгорает на воздухе. Алюминий соединяется с кислородом воздуха и в атмосферных условиях. При этом алюминий покрывается тонкой (толщиной ~ 0,0002 мм) плотной пленкой окиси алюминия, защищающей его от дальнейшего окисления; поэтому алюминий стоек против коррозии. Поверхность алюминия хорошо защищает от окисления этой пленки и в расплавленном состоянии.

Из сплавов алюминия наибольшее значение имеют дюралюминий и силумины.

В состав дюралюминия, кроме алюминия, входят 3,4-4% Cu, 0,5% Mn и 0,5%Mg, допускается не более 0,8% Fe и 0,8% Si. Дюралюминий хорошо деформируется и по своим механическим свойствам близок к некоторым сортам стали, хотя он в 2,7 раза легче стали (плотность дюралюминия 2,85 г/см 3).

Механические свойства этого сплава повышаются после термической обработке и деформации в холодном состоянии. Сопротивление на разрыв повышается со 147-216 МПа до 353-412 МПа, а твердость по Бринеллю с 490-588 до 880-980 МПа. При этом относительное удлинение сплава почти не изменяется и остается достаточно высоким (18-24%).

Силумины – литейные сплавы алюминия с кремнием. Они обладают хорошими литейными качествами и механическими свойствами.


Содержание статьи

АЛЮМИНИЕВАЯ ПРОМЫШЛЕННОСТЬ. В 1854 А.Девиль изобрел первый практический способ промышленного производства алюминия. Рост производства был особенно быстрым во время и после Второй мировой войны. Производство первичного алюминия (без учета производства Советского Союза) составляло только 620 тыс. т в 1939, но возросло до1,9 млн. т в 1943. К 1956 во всем мире производилось 3,4 млн. т первичного алюминия; в 1965 мировое производство алюминия составило 5,4 млн. т, в 1980 – 16,1 млн. т, в 1990 – 18 млн. т.

Производство алюминия включает три основные стадии: добыча и обогащение руды; получение из руды чистой окиси алюминия (глинозема); восстановление алюминия из окиси путем электролиза.

Добыча и обогащение руды.

Основная алюминиевая руда – бокситы – добывается главным образом в карьерах; крупнейшими производителями бокситов являются Австралия, Гвинея, Ямайка и Бразилия. Обычно слой руды взрывается для образования рабочей площадки на глубине до 20 м, а потом выбирается. Куски руды дробятся и сортируются с помощью грохотов и классификаторов. Дробленая руда далее обогащается, а пустая порода (хвосты) выбрасывается. На этой стадии процесса экономически выгодно использовать методы промывки и грохочения, использующие разность плотностей руды и пустой породы для отделения их друг от друга. Менее плотная пустая порода уносится промывочной водой, а концентрат оседает на дно обогатительной установки.

Процесс Байера.

Процесс получения чистой окиси алюминия включает нагревание боксита с едким натром, фильтрование, осаждение гидроокиси алюминия и ее прокаливание для выделения чистого глинозема. На практике руда смешивается с нужным количеством горячего едкого натра в автоклаве из низкоуглеродистой стали, и смесь прокачивается через ряд стальных сосудов с паровой рубашкой. В сосудах поддерживается давление пара 1,4–3,5 МПа в течение времени от 40 мин до нескольких часов, пока не завершится переход окиси алюминия из боксита в раствор алюмината натрия в перегретой жидкости. После охлаждения твердый осадок отделяется от жидкости. Жидкость фильтруется; в результате получается пересыщенный чистый раствор алюмината. Этот раствор метастабилен: алюминат-ион разлагается с образованием гидроокиси алюминия. Добавление в раствор кристаллической гидроокиси алюминия, остающейся от предыдущего цикла, ускоряет разложение. Сухие кристаллы гидроокиси алюминия затем прокаливаются для отделения воды. Получающийся безводный глинозем пригоден для использования в процессе Холла – Эру. По экономическим соображениям в промышленности эти процессы стремятся делать по возможности непрерывными.

Электролиз Холла – Эру.

Заключительная стадия производства алюминия включает его электролитическое восстановление из чистой окиси алюминия, полученной в процессе Байера. Этот способ извлечения алюминия основывается на том (открытом Холлом и Эру) факте, что когда глинозем растворяется в расплавленном криолите, при электролизе раствора выделяется алюминий. Типичный электролизер Холла – Эру представляет собой ванну с расплавленным криолитом 3NaF Ч AlF 3 (Na 3 AlF 6) – двойным фторидом натрия и алюминия, в котором растворено 3–5% глинозема, – плавающим на подушке из расплавленного алюминия. Стальные шины, проходящие через подину из углеродистых плит, используются для подачи напряжения на катод, а подвешенные угольные бруски, погруженные в расплавленный криолит, служат анодами. Рабочая температура процесса близка к 950° С, что значительно выше температуры плавления алюминия. Температура в электролизной ванне регулируется изменением зазора между анодами и катодным металлоприемником, на который осаждается расплавленный алюминий. Для поддержания оптимальной температуры и концентрации глинозема в современных электролизерах применяются сложные системы управления. На производство алюминия расходуется очень много электроэнергии, поэтому энергетический КПД процесса – главная проблема в алюминиевой промышленности. Электродные реакции представляют собой восстановление алюминия из его окиси и окисление углерода до его окиси и двуокиси на анодах. Одна печь дает до 2,2 т алюминия в сутки. Металл сливается раз в сутки (или реже), потом флюсуется и дегазируется в отражательной копильной печи и разливается по формам.

Возобновляемые электроды Содерберга.

В электролизере Холла – Эру угольные аноды расходуются со скоростью 2,5 см/сут, так что часто требуется установка новых анодов. Чтобы исключить частое вмешательство человека в производство, был разработан процесс с использованием возобновляемого электрода Содерберга. Анод Содерберга непрерывно образуется и спекается в восстановительной камере из пасты – смеси 70% молотого кокса и 30% смоляной связки. Эта смесь набивается в прямоугольную оболочку из листовой стали, открытую с обоих концов и расположенную вертикально над ванной с расплавом внутри печи. По мере расходования анода в верхнее отверстие оболочки добавляется паста. Когда коксосмоляная смесь опускается вниз и нагревается, она спекается в твердый углеродистый брусок прежде, чем достигает рабочей зоны.

Потребление алюминия.

Около 28% производимого алюминия идет на изготовление банок для напитков, пищевой тары и всевозможных упаковок. Еще 17% используется в транспортных средствах, включая самолеты, военную технику, железнодорожные пассажирские вагоны и автомобили. Около 16% применяется в конструкциях зданий. Примерно 8% используется в высоковольтных линиях электропередачи и других электрических устройствах, 7% – в таких потребительских товарах, как холодильники, кондиционеры воздуха, стиральные машины и мебель. На нужды машиностроения и промышленное оборудование расходуется 6%. Остающаяся часть потребляемого алюминия используется в производстве телевизионных антенн, пигментов и красок, космических кораблей и судов.

Впервые металлический алюминий был получен химическим путем немецким химиком Ф.Велером в 1821 г. (восстановлением из хлорида алюминия металлическим калием при нагревании). В 1854 г. французский ученый Сент-Клер Девиль предложил электрохимический способ получения алюминия, восстанавливая натрием двойной хлорид алюминия-натрия.

Производство и получение алюминия

Металлический алюминий получают в три стадии:

  • Получение глинозема (Al 2 O 3) из алюминиевых руд;
  • Получение алюминия из глинозема;
  • Рафинирование алюминия.

Получение глинозема

Около 95 % всего глинозема получают из бокситовых руд.

Боксит (фр. bauxite) (по названию местности Baux на юге Франции) – алюминиевая руда, состоящая из гидроксидов алюминия, оксидов железа и кремния, сырьё для получения глинозёма и глинозёмосодержащих огнеупоров. Содержание глинозёма в промышленных бокситах колеблется от 40 % до 60 % и выше. Используется также в качестве флюса в чёрной металлургии.

Рисунок 1 – Бокситовая руда

Обычно бокситы представляют собой землистую глиноподобную массу, которая может иметь полосчатую, пизолитовую (гороховидную) либо однородную текстуру. В обычных условиях выветривания полевые шпаты (минералы, составляющие большую часть земной коры и являющиеся алюмосиликатами) разлагаются с образованием глин, но в условиях жаркого климата и высокой влажности конечным продуктом их разложения могут оказаться бокситы, т. к. подобная обстановка благоприятствует выносу щелочей и кремнезёма, особенно из сиенитов или габбро. Бокситы перерабатывают в алюминий поэтапно: сначала получают оксид алюминия (глинозём), а затем металлический алюминий (электролитическим способом в присутствии криолита).

Основные примеси в бокситах это Fe 2 O 3 , SiO 2 , TiO 2 . К малым примесям бокситов относят: Na 2 O, K 2 O, CaO, MgO, редкоземельные элементы, Cr, P, V, F, органика.

Обычно бокситы классифицируют:

  • по цвету;
  • по основному минералу (чаще они бывают смешанными);
  • по возрасту.

Основными критериями качества алюминиевой руды являются :

  1. Кремниевый модуль (Мsi = Al 2 O 3 /SiO 2 (% масс.)). Чем больше кремниевый модуль тем лучше качество (Мsi = 7);
  2. Содержание железа в пересчете на Fe 2 O 3 . Если содержание Fe 2 O 3 около 18 % масс., то боксит считается высокожелезистым. Чем больше содержание железа труднее добыть бокситы;
  3. Содержание серы. Наличие большого количества серы усложняет переработку боксита;
  4. Содержание карбонатов в пересчете на CO 3 (2-) . Наличие большого количества карбонатов усложняет переработку боксита.

Бокситы применяют:

  • в производстве глинозема;
  • в производстве абразивных материалов;
  • в производстве огнеупорных материалов;
  • в качестве флюса для выплавки мартеновской стали;
  • для сушки газов и чистки нефти от серы;
  • в качестве красителя.

На сегодняшний день главными поставщиками боксита являются:

  • Австралия – там находятся также огромные залежи Fe, Au, U, Ni, Co, Cuи др. Выгоднее покупать сырье у Австралии, чем перерабатывать свое.
  • Гвинея – У России есть несколько купленных мест.
  • Центральная Америка: Гайана, Ямайка, Суриман.
  • Бразилия.

В Европе все месторождения истощены. Осуществляются поставки бокситов из Греции, но данное сырье является сырьем низкого качества.

Рисунок 2 – Запасы бокситов в мире

Ниже представлен основных месторождений алюминиевых руд в России.

  • Первое месторождение было открыто в 1914 г. под Сант-Петербургов, рядом с городом Тихвин. На данном месторождении было построено 6 заводов. Самый большой - это Волховский алюминиевый завод. На сегодняшний день Тихвинское месторождение истощено и работает в основном на привозном сырье.
  • В 1931 г. было открыто уникальное Северо-Уральское месторождение высококачественных бокситов (СУБР). Оно послужило базой для строительства в 1939 г. Уральского алюминиевого завода (УАЗ). А на основе Южно-уральского бокситового рудника (ЮУБР) был построен Богословский алюминиевый завод (БАЗ).
  • Североонежское месторождение находится по дороге на Кольский полуостров. В Плане есть, но дата строительства неизвестна.
  • Висловское месторождение – чистоглинистое месторождение каолитного типа. Для глинозема не используется.
  • Тиманское месторождение (Республика Коми, Варкута). Канадцы заинтересованы в данном месторождении, поэтому планируют строительство заводов ("Коми Суал" - холдинг).

Получение глинозема из бокситовых руд

Поскольку алюминий амфотерен, глинозем получают тремя способами:

  • щелочным,
  • кислотным;
  • электролитическим.

Наибольшее распространение имеет щелочной способ (метод К. И. Байера, разработанный в России в конце позапрошлого столетия и применяемый для переработки высокосортных бокситов с небольшим количеством (до 5 – 6 %) кремнезема). С тех пор техническое выполнение его было существенно улучшено. Схема производства глинозема по способу Байера представлена на рисунке 3.

Рисунок 3 – Схема получения глинозема по способу Байера

Сущность способа состоит в том, что алюминиевые растворы быстро разлагаются при введении в них гидроокиси алюминия, а оставшийся от разложения раствор после его выпаривания в условиях интенсивного перемешивания при 169 – 170 °С может вновь растворять глинозем, содержащийся в бокситах. Этот способ состоит из следующих основных операций:

1. Подготовки боксита, заключающийся в его дроблении и измельчении в мельницах; в мельницы подают боксит, едкую щелочь и небольшое количество извести, которое улучшает выделение Al 2 O 3 ; полученную пульпу подают на выщелачивание;

2. Выщелачивания боксита (в последнее время применяемые до сих пор блоки автоклав круглой формы частично заменены трубчатыми автоклавами, в которых при температурах 230 – 250 °С (500 – 520 К) происходит выщелачивание), заключающегося в химическом его разложении от взаимодействия с водным раствором щелочи; гидраты окиси алюминия при взаимодействии со щелочью переходят в раствор в виде алюмината натрия:

AlOOH+NaOH→NaAlO 2 +H 2 O

Al(OH) 3 +NaOH→NaAlO 2 +2H 2 O;

SiO 2 +2NaOH→Na 2 SiO 3 +H2O;

в растворе алюминат натрия и силикат натрия образуют нерастворимый натриевый алюмосиликат; в нерастворимый остаток переходят окислы титана и железа, предающие остатку красный цвет; этот остаток называют красным шламом. По окончании растворения полученный алюминат натрия разбавляют водным раствором щелочи при одновременном понижении температуры на 100 °С;

3. Отделения алюминатного раствора от красного шлама обычно осуществляемого путем промывки в специальных сгустителях; в результате этого красный шлам оседает, а алюминатный раствор сливают и затем фильтруют (осветляют). В ограниченных количествах шлам находит применение, например, как добавка к цементу. В зависимости от сорта бокситов на 1 т полученной окиси алюминия приходится 0,6 – 1,0 т красного шлама (сухого остатка);

4. Разложения алюминатного раствора. Его фильтруют и перекачивают в большие емкости с мешалками (декомпозеры). Из пересыщенного раствора при охлаждении на 60 °С (330 К) и постоянном перемешивании извлекается гидроокись алюминия Al(OH) 3 . Так как этот процесс протекает медленно и неравномерно, а формирование и рост кристаллов гидроокиси алюминия имеют большое значение при ее дальнейшей обработке, в декомпозеры добавляют большое количество твердой гидроокиси – затравки:

Na 2 O ·Al 2 O 3 + 4H2O→Al(OH) 3 + 2NaOH;

5. Выделения гидроокиси алюминия и ее классификации; это происходит в гидроциклонах и вакуум-фильтрах, где от алюминатного раствора выделяют осадок, содержащий 50 – 60 % частиц Al(OH) 3 . Значительную часть гидроокиси возвращают в процесс декомпозиции как затра­вочный материал, которая и остается в обороте в неизменных количествах. Оста­ток после промывки водой идет на кальцинацию; фильтрат также возвращается в оборот (после концентрации в выпарных аппаратах – для выщелачивания новых бокситов);

6. Обезвоживания гидроокиси алюминия (кальцинации); это завершающая операция производства глинозема; ее осуществляют в трубчатых вращающихся печах, а в последнее время также в печах с турбулентным движением материала при температуре 1150 – 1300 °С; сырая гидроокись алюминия, проходя через вращающуюся печь, высушивается и обезвоживается; при нагреве происходят последовательно следующие структурные превращения:

Al(OH) 3 → AlOOH → γ-Al 2 O 3 → α-Al 2 O 3

200 °C – 950 °С – 1200 °С.

В окончательно прокаленном глиноземе содержится 30 – 50 % α-Al2O3 (корунд), остальное γ-Al 2 O 2 .

Этим способом извлекается 85 – 87 % от всего получаемого глинозема. Полученная окись алюминия представляет собой прочное химическое соединение с температурой плавления 2050 ° С .

Получение алюминия электролизом

Электролитическое восстановление окиси алюминия, растворенной в расплаве на основе криолита, осуществляется при 950-970 °С в электролизере. Электролизер состоит из футерованной углеродистыми блоками ванны, к подине которой подводится электрический ток. Выделившийся на подине, служащей катодом, жидкий алюминий тяжелее расплава соли электролита, поэтому собирается на угольном основании, откуда его периодически откачивают (рисунок 4). Сверху в электролит погружены угольные аноды, которые сгорают в атмосфере выделяющегося из окиси алюминия кислорода, выделяя окись угле­рода (CO) или двуокись углерода (CO 2). На практике находят применение два типа анодов:

  • самообжигающиеся аноды Зедерберга, состоящие из брикетов, так называемых «хлебов» массы Зедерберга (малозольный уголь с 25 – 35 % каменноугольного пека), набитых в алюминиевую оболочку; под действием высокой температуры анодная масса обжигается (спекается);
  • обожженные, или «непрерывные», аноды из больших угольных блоков (например, 1900 × 600 × 500 мм массой около 1,1 т).

Рисунок 4 – Схема электролизера

Сила тока на электролизерах состав­ляет 150 000 А. Они включаются в сеть последова­тельно, т. е. получается система (серия) – длинный ряд электролизеров.

Рабочее напряжение на ванне, состав­ляющее 4 – 5 В, значительно выше на­пряжения, при кото­ром проис­ходит раз­ло­жение окиси алю­миния, поскольку в процессе рабо­ты неизбежны потери напряжения в различных частях системы. Баланс сырья и энергии при получении 1 т алюминия представлен на рисунке 5.

Рисунок 5 – Баланс сырья и энергии при получении 1 т алюминия

Вреакционном сосуде окись алюминия превращается сначала в хлорид алюминия. Затем в плотно изолированной ванне происходит электролиз AlCl 3 , растворенного в расплаве солей KCl, NaCl. Выделяющийся при этом хлор отсасывается и пода­ется для вторичного использования; алюминий осаждается на катоде.

Преимуществами данного метода перед существующим электролизом жидкого крио­литоглиноземного расплава (Al 2 O 3 , растворенная в кри­олите Na 3 AlF 6) считают: экономию до 30 % энергии; возможность применения окиси алюминия, которая не годится для традиционного электролиза (например, Al 2 O 3 с высоким содержанием кремния); замену дорогостоящего криолита более дешевыми солями; исчезновение опасности выделения фтора .

Получение рафинированного алюминия

Для алюминия рафини­рующий электролиз с разло­жением водных солевых рас­творов невозможен. Пос­кольку для некоторых целей степень очистки промыш­лен­ного алюминия (Al 99,5 – Al 99,8), полученного электролизом криолитогли­нозем­ного расплава, недостаточна, то из промышлен­ного алюминия или отходов металла путем рафинирова­ния получают еще более чистый алюминий (Al 99,99 R). На­иболее известен метод рафинирования - трехслой­ный электролиз.

Рафинирование методом трехслойного электролиза

Одетая стальным листом, работающая на постоянном токе (рисунок 6) ванна для рафиниро­вания состоит из уголь­ной подины с токопод­водами и теплоизоли­рующей магнезитовой футеровки. В проти­воположность электро­лизу криолитоглино­земного расплава ано­дом здесь служит, как правило, расплавлен­ный рафинируемый ме­талл (нижний анодный слой). Электролит сос­тавляется из чистых фторидов или смеси хлорида бария и фто­ридов алюминия и нат­рия (средний слой). Алюминий, растворяю­щийся из анодного слоя в электролите, выделяется над электролитом (верхний катодный слой). Чистый металл служит катодом. Подвод тока к катодному слою осуществляется графитовым электродом.

Рисунок 6 - Схема электролизера с передним горном для рафинирования алюминия (по Фульда - Гинзбергу)

1 – алюминиевый расплав; 2 – электролит; 3 – рафинированный алюминий высокой частоты; 4 – катод из графита; 5 – магнезитовая стена; 6 – передний горн; 7 – изолирующий слой; 8 – боковая изоляция; 9 – угольная подина; 10 – анодный токопровод; 11 – изоляция подины; 12 – железный короб; 13 – крышка

Ванна работает при 750 – 800 °С, расход электроэнергии составляет 20 кВт ч на 1 кг чистого алюминия, т. е. несколько выше, чем при обычном электролизе алюминия.

Металл анода содержит 25 – 35 % Cu; 7 – 12 % Zn; 6 – 9 % Si; до 5 % Fe и незначительное количество марганца, никеля, свинца и олова, остальное (40 – 55 %) – алюминий. Все тяжелые металлы и кремний при рафинировании остаются в анод­ном слое. Наличие магния в электролите приводит к нежелательным изменениям состава электролита или к сильному его ошлакованию. Для очистки от магния шлаки, содержащие магний, обрабатывают флюсами или газообразным хлором.

В результате рафинирования получают чистый алюминий (99,99 %) и про­дукты сегрегации (зайгер-продукт), которые содержат тяжелые металлы и крем­ний и выделяются в виде щелочного раствора и кристаллического остатка. Щелоч­ной раствор является отходом, а твердый остаток применяется для раскисления.

Рафинированный алюминий имеет обычно следующий состав, %: Fe 0,0005 – 0,002; Si 0,002 – 0,005; Cu 0,0005 – 0,002; Zn 0,0005 – 0,002; Mg следы; Al остальное.

Рафинированный алюминий перерабатывают в полуфабрикат в указанном составе или легируют магнием (таблица 1).

Таблица 1 – Химический состав алюминия повышенной чистоты и первичного алюминия по DIN 1712, лист 1

Допустимые примеси* , %

в том числе

* Насколько возможно определить обычными методами исследования.

** Чистый алюминий для электротехники (алюминиевые проводники) поставляют в виде первичного алюминий 99,5, содержащего не более 0,03 % (Ti + Cr + V + Mn); обозначается в этом случае E-A1, номер материала 3.0256. В остальном соответствует нормам VDE-0202.

Рафинирование путем алюмоорганических комплексных соединений и зонной плавкой

Алюминий степени чистоты выше марки A1 99,99 R может быть получен рафинирую­щим электролизом чистого или технически чистого алюминия с применением в качестве электролита комплексных алюмоорганических соединений алюминия. Электролиз проходит при температуре около 1000°С между твердыми алюминиевыми электродами и в принципе схож с рафинирующим электролизом меди. Природа электролита диктует необходимость работать без доступа воздуха и при низкой плотности тока.

Этот вид рафинирующего электролиза, применяемым сначала лишь в лабора­торном масштабе, уже осуществляется в небольшом производственном масштабе – изготовляется несколько тонн металла в год. Номинальная степень очистки полу­чаемого металла 99,999 -99,9999%. Потенциальными областями применения металла такой чистоты являются криогенная электротехника и электроника.

Возможно применение рассмотренного метода рафинирования и в гальванотехнике.

Еще более высокую чистоту – номинально до A1 99,99999 – можно получить последующей зонной плавкой металла. При переработке алюминия повышенной чистоты в полуфабрикат, лист или проволоку необходимо, учитывая низкую температуру рекристаллизации металла, принимать особые меры предосторожности. Примечательным свойством рафинированного металла является его высокая электропроводность в области криогенных температур .

Свойства

Алюминий - элемент главной подгруппы третьей группы третьего периода периодической системы химических элементов Д. И. Менделеева. Атомный номер 13. Обозначается символом Al (лат. Aluminium). Относится к группе лёгких металлов.

Наиболее распространённый металл и третий по распространённости химический элемент в земной коре (после кислорода и кремния). Процент содержания алюминия в земной коре по данным различных исследователей составляет от 7,45 до 8,14 % от массы земной коры.

Важнейшими минералами, содержащими алюминий, являются:

Корунд- Al 2 O 3

Диаспор (бемит) -AlOOH

Шпинель - Al 2 O 3 ·MgO

Гиббсит -Al(OH) 3

Кианит (андалузит, силимонит) - Al 2 O 3 ·SiO 2

Каолин - Al 2 O 3 ·2SiO 2 ·2H 2 O

Основные алюминиевые руды – бокситы, нефелины, алуниты, каолины и кианиты. Содержание глинозёма в промышленных бокситах колеблется от 40 % до 60 % и выше. Используется также в качестве флюса в чёрной металлургии. К числу крупных месторождений бокситов в нашей стране относится Тихвинское (Ленинградская область), Северо-уральское (Свердловская область), Южноуральское (Челябинская область), Тургайское и Краснооктябрьское (Кустанайская область).

Физические свойства

    металл серебристо-белого цвета, лёгкий,

    плотность - 2,7 г/см³,

    температура плавления у технического алюминия - 658 °C, у алюминия высокой чистоты - 660 °C

    удельная теплота плавления - 390 кДж/кг,

    температура кипения - 2500 °C

    твёрдость по Бринеллю - 24…32 кгс/мм²,

    высокая пластичность: у технического - 35 %, у чистого - 50 %, прокатывается в тонкий лист и даже фольгу

    модуль Юнга - 70 ГПа.

    Алюминий обладает высокой электропроводностью (0,0265 мкОм·м) и теплопроводностью (1,24×10−3 Вт/(м·К)), 65 % от электропроводности меди, обладает высокой светоотражательной способностью.

    слабый парамагнетик

    Алюминий образует сплавы почти со всеми металлами. В сплавах алюминий сохраняет свои свойства. В расплавленном состоянии алюминий жидкотекуч и хорошо заполняет формы, в твердом виде он хорошо деформируется и легко поддается резанию, пайке и сварке. Наиболее известны сплавы с медью и магнием (дюралюминий) и кремнием (силумин)

    Сродство алюминия к кислороду очень большое. При его окислении выделяется большое количество тепла (~ 1670000Дж/моль). Тонкоизмельченный алюминий при: нагревании воспламеняется и сгорает на воздухе. Алюминий соединяется с кислородом воздуха и в атмосферных условиях. При этом алюминий покрывается тонкой (толщиной ~ 0,0002 мм) плотной пленкой окиси алюминия, защищающей его от дальнейшего окисления; поэтому алюминий стоек против коррозии. Поверхность алюминия хорошо защищается от окисления этой пленкой и в расплавленном состоянии.

Производство

Основным современным способом производства алюминия является электролитический способ, состоящий из двух стадий. Первая - эти получение глинозема (Аl 2 O 3) из рудного сырья и вторая- получение жидкого алюминия из глинозема путем электролиза.

Способ Байера

Способ Байера - способ выделения глинозема из боксита - основан на выщелачивании, цель которого растворить содержащийся в боксите оксид алюминия Аl 2 O 3 , избежав перевода в раствор остальных составляющих боксита (SiO 2 , Fe 2 O 3 и др.). В основе способа лежит обратимая химическая реакция:

Аl 2 O 3 · n Н 2 O + 2NaOH = Na 2 O · Аl 2 O 3 + (n + 1)H 2 O

При протекании реакции вправо глинозем в виде алюмината натрия переходит в раствор, а при обратном течении реакции образующийся гидратированный Аl 2 O 3 выпадает в осадок.

1. Подготовка боксита к выщелачиванию. Боксит дробят и размалывают до фракций размером 0,05-0,15 мм в среде добавляемой щелочи и оборотного раствора щелочи NaOH, добавляют также немного извести, активизирующей выщелачивание.

2. Выщелачивание боксита, заключается его в химическом разложении от взаимодействия с водным раствором щелочи; гидраты окиси алюминия при взаимодействии со щелочью переходят в раствор в виде алюмината натрия:

AlOOH+NaOH → NaAlO 2 +H2O

Al(OH) 3 +NaOH → NaAlO 2 +2H 2 O;

SiO 2 +2NaOH → Na 2 SiO 3 +H 2 O;

В растворе алюминат натрия и силикат натрия образуют нерастворимый натриевый алюмосиликат; в нерастворимый остаток переходят окислы титана и железа, предающие остатку красный цвет; этот остаток называют красным шламом. По окончании растворения полученный алюминат натрия разбавляют водным раствором щелочи при одновременном понижении температуры на 100 °С.

Выщелачивание производится в автоклавах - сосудах, работающих под давлением. Продуктом является автоклавная пульпа, состоящая из алюминатного раствора (содержащего Na 2 O · Аl 2 O 3) и шлама (осадка, в который выпадают остальные примеси боксита).

3. Отделение алюминатного раствора от красного шлама обычно осуществляемого путем промывки в специальных сгустителях; в результате этого красный шлам оседает, а алюминатный раствор сливают и затем фильтруют (осветляют).Получаемый красный шлам (окраску ему придают частицы Fe 2 O 3) идет в отвал, шлам содержит, %: Аl 2 O 3 12-18, SiO 2 6-11, Fe 2 O 3 44-50, CaO 8-13.

4. Разложение алюминатного раствора , называемое также декомпозицией или выкручиванием, проводят с целью перевести алюминий из раствора в осадок в виде Аl 2 O 3 · 3 Н 2 O, для чего обеспечивают течение приведенной выше реакции выщелачивания влево, в сторону образования Аl 2 O 3 · 3 Н 2 O. Чтобы указанная реакция шла влево, необходимо понизить давление (до атмосферного), разбавить и охладить раствор, ввести в него затравки (мелкие кристаллы гидрооксида алюминия) и пульпу для получения достаточно крупных кристаллов Аl 2 O 3 · 3 Н 2 O перемешивать в течение 50-90 ч. Так как этот процесс протекает медленно и неравномерно, а формирование и рост кристаллов гидроокиси алюминия имеют большое значение при ее дальнейшей обработке, в декомпозеры добавляют большое количество твердой гидроокиси - затравки:

Na 2 O·Al 2 O 3 + 4H 2 O → Al(OH) 3 +2NaOH;

5. Отделение кристаллов гидрооксида алюминия от раствора и классификация кристаллов по крупности. После декомпозиции пульпа поступает в сгустители, где гидрооксид отделяют от раствора. Полученный гидрооксид в гидросепараторах разделяют на фракцию с размером частиц 40-100 мкм и мелкую фракцию (размером < 40 мкм), которую используют в качестве затравки при декомпозиции. Крупную фракцию промывают, фильтруют и направляют на кальцинацию.

6. Обезвоживания гидроокиси алюминия (кальцинации) ; это завершающая операция производства глинозема; ее осуществляют в трубчатых вращающихся печах, а в последнее время также в печах с турбулентным движением материала при температуре 1150-1300 °С; сырая гидроокись алюминия, проходя через вращающуюся печь, высушивается и обезвоживается, проходя через вращающуюся печь, высушивается и обезвоживается; при нагреве происходят последовательно следующие структурные превращения:

Al(OH) 3 → AlOOH→ γ-Al 2 O → α-Al 2 O 3

В окончательно прокаленном глиноземе содержится 30-50% α- Al 2 O 3 (корунд), остальное γ- Al 2 O 3 .

Извлечение глинозема при использовании описанного способа Байера составляет около 87 %. На производство 1 т глинозема расходуют 2,0-2,5 т боксита, 70-90 кг NaOH, около 120 кг извести, 7-9 т пара, 160-180 кг мазута (в пересчете на условное топливо) и около 280 кВт · ч электроэнергии.

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Магнитогорский Государственный Технический Университет

им. Носова

Кафедра металлургии черных металлов

Реферат по дисциплине «История металлургии»

МЕТАЛЛУРГИЯ АЛЮМИНИЯ


Аннотация

Рассмотрена тема "Металлургия алюминия", описаны основные свойства этого металла. Кратко изложена история открытия алюминия, возможные способы его получения и применения в различных отраслях промышленности.


Введение

1. Свойства алюминия

2. Применение алюминия

3. Сырые материалы

4. Производство глинозема

5. Электролитическое получение алюминия

6. Рафинирование алюминия

Заключение

Список использованной литературы


Введение

Слово «металлургия» происходит от греч.:

metalleuо – выкапываю, добываю из земли;

metallurgeo – добываю руду, обрабатываю металлы;

metallon – рудник, металл.

Это слово означает область науки и техники, охватывающую процессы обработки добытых из недр руд, получение металлов и сплавов, придание им определенных свойств.

В древности, в средние века и сравнительно недавно, вплоть до времени М.В.Ломоносова, считалось, что существует 7 металлов (золото, серебро, медь, олово, свинец, железо, ртуть).

В 1814 г. шведский химик Й.Берцелиус предложил использовать буквенные знаки, которыми пользуется весь мир, за редкими исключениями.

Сегодня науке известно более 80 металлов, большинство из них используется в технике.

В мировой практике сложилось деление металлов на черные (железо и сплавы на его основе) и все остальные – нечерные (Non-ferrousmetals, англ.; Nichtei-senmetalle, нем.) или цветные металлы. Металлургия часто подразделяется на черную и цветную. В настоящее время на долю черных металлов приходится около 95% всей производимой в мире металлопродукции.

В технике принята также условная классификация, по которой цветные металлы разделены на «легкие» (алюминий, магний), «тяжелые» (медь, свинец и др.), тугоплавкие (вольфрам, молибден и др.), благородные (золото, платина и др.), редкие металлы.

Доля продукции, изготовленной с использованием черных и цветных металлов, в настоящее время составляет 72-74% валового национального продукта государства. Можно утверждать, что металлы в XXI в. останутся основным конструкционными материалами, так как по своим свойствам, экономичности производства и потребления не имеют себе равных в большинстве сфер применения.

Из ~ 800 млн. т потребляемых металлов ~ 750 млн. т – сталь, 20-22 млн. т – алюминий, 8-10 млн. т – медь, 5-6 млн. т – цинк, 4-5 млн. т – свинец (остальные - < 1 млн. т).

Из наиболее ценных и важных для современной техники металлов лишь немногие содержится в земной коре в больших количествах: алюминий (8,8%), железо (4,65%), магний (2,1%), титан (0,63%).

К рудным месторождениям легких металлов обычно относят руды, содержащие алюминий; основной поставщик алюминия – бокситы, а также алуниты, нефелины и раз личные глины. К рудным месторождениям цветных металлов относятся месторождения меди, свинца и цинка, кобальта, никеля, сурьмы. Запасы металлов в наиболее крупных из них достигают от десятков до сотен млн. т, при обычном содержании металлов в руде – единицы процентов.

Масса добываемых материалов во много раз превышает количество содержащихся в руде металлов и в подавляющем большинстве случаев из природных руд экономически невыгодно непосредственно извлекать полезные компоненты.

Археологические раскопки свидетельствуют о том, что знакомство человека с металлами относится к временам, весьма удаленным от нас. Считается, что первые изделия из бронзы получены за 3 тыс. лет до н.э восстановительной плавкой смеси медной и оловянной руд с древесным углем. Значительно позже бронзы стали изготовлять добавкой в медь олова и других металлов (алюминиевые, бериллиевые, кремненикелевые и др.). В настоящее время наиболее распространены алюминиевые бронзы (5-12% Al) с добавками железа, марганца и никеля.

В настоящее время металлургическое производство является одним из приоритетных отраслей народного хозяйства.


1. СВОЙСТВА АЛЮМИНИЯ

Алюминий был впервые получен датским физиком Х.Эрстедом в 1825 г. Название этого элемента происходит от латинского алюмен, так в древности назывались квасцы, которые использовали для крашения тканей.

Алюминий обладает многими ценными свойствами: небольшой плотностью – около 2,7г/см 3 , высокой теплопроводностью – около 300 Вт/(м. К) и высокой электропроводностью 13,8 . 10 7 Ом/м, хорошей пластичностью и достаточной механической прочностью.

Алюминий образует сплавы со многими элементами. В расплавленном состоянии алюминий жидкотекуч и хорошо заполняет формы, в твердом виде он хорошо деформируется и легко поддается резанию, пайке и сварке.

Сродство алюминия к кислороду очень большое. При его окислении выделяетсябольшое количество тепла (~ 1670000 Дж/моль). Тонкоизмельченный алюминий при нагревании воспламеняется и сгорает на воздухе. Алюминий соединяется с кислородом воздуха и в атмосферных условиях. При этом алюминий покрывается тонкой (толщиной ~ 0,0002 мм) плотной пленкой окиси алюминия, защищающей его от дальнейшего окисления; поэтому алюминий стоек против коррозии. Поверхность алюминия хорошо защищает от окисления этой пленки и в расплавленном состоянии.

Из сплавов алюминия наибольшее значение имеют дюралюминий и силумины.

В состав дюралюминия, кроме алюминия, входят 3,4-4% Cu, 0,5% Mn и 0,5%Mg, допускается не более 0,8% Fe и 0,8% Si. Дюралюминий хорошо деформируется и по своим механическим свойствам близок к некоторым сортам стали, хотя он в 2,7 раза легче стали (плотность дюралюминия 2,85 г/см 3).

Механические свойства этого сплава повышаются после термической обработке и деформации в холодном состоянии. Сопротивление на разрыв повышается со 147-216 МПа до 353-412 МПа, а твердость по Бринеллю с 490-588 до 880-980 МПа. При этом относительное удлинение сплава почти не изменяется и остается достаточно высоким (18-24%).

Силумины – литейные сплавы алюминия с кремнием. Они обладают хорошими литейными качествами и механическими свойствами.

2. ПРИМЕНЕНИЕ АЛЮМИНИЯ

Алюминий и сплавы широко применяют во многих отраслях промышленности, в том числе в авиации, транспорте, металлургии, пищевой промышленности и др. Из алюминия и его сплавов изготовляют корпуса самолетов, моторы, блоки цилиндров, коробки передач, насосы и другие детали в авиационной, автомобильной и тракторной промышленности, сосуды для хранения химических продуктов. Алюминий широко применяют в быту, пищевой промышленности, в ядерной энергетики и космических кораблей изготовлены из алюминия и его сплавов.

Вследствие большого химического сродства алюминия к кислороду его применяют в металлургии как раскислитель, а также для получения при использовании так называемого алюминотермического процесса трудно восстанавливаемых металлов (кальция, лития и др.).

По общему производству металла в мире алюминий занимает второе место после железа. ,

3. СЫРЫЕ МАТЕРИАЛЫ

Основным современным способом производства алюминия является электролитический способ, состоящий из двух стадий. Первая – это получение глинозема (Al 2 O 3) из рудного сырья и вторая – получение жидкого алюминия из глинозема путем электролиза.

Руды алюминия. Вследствие высокой химической активности алюминий встречается в природе только в связанном виде: корунд Al 2 O 3 , гиббсит Al 2 O 3 . 3H 2 O, бемит Al 2 O 3 . H 2 O, кианит 3Al 2 O 3 , 2SiO 2 , нефелин (Na, K) 2 O . Al 2 O 3 . 2SiO 2 , каолинит Al 2 O 3 , 2SiO 2 . 2H 2 Oи другие. Основными используемыми в настоящее время алюминиевыми рудами являются бокситы, а также нефелины и алуниты.

Бокситы. Алюминий в бокситах находится главным образом в виде гидроксидов алюминия (гиббсита, бемита и др.), корунда и каолинта. Химический состав бокситов довольно сложен. Они часто содержат более 40 химических элементов. Содержание глинозема в них составляет 35-60%, кремнезема 2-20%, оксида Fe 2 O 3 2-40%, окиси титана 0,01-10%. Важной характеристикой бокситов является отношение содержаний в них Al 2 O 3 к SiO 2 по массе – так называемый кремневый модуль.

К числу крупных месторождений бокситов в нашей стране относится Тихвинское (Ленинградская область), Североуральское (Свердловская область), Южноуральское (Челябинская область), Тургайское и Краснооктябрьское (Кустанайская область).

Нефелины входят в состав нефелиновых сиенитов и уртитов. Большое месторождение уртитов находится на Кольском полуострове. Основные компоненты уртита – нефелин и апатит 3Ca 3 (PO 4) 2 . CaF 2 . Их подвергают флотационному обогащению с выделением нефелинового апатитового концентратов. Апатитовый концентрат идет для приго товления фосфорных удобрений, а нефелиновый – для получения глинозема. Нефелиновый концентрат содержит, %: 20-30 Al 2 O 3 , 42-44 SiO 2 , 13-14 Na 2 O, 6-7 K 2 O, 3-4 Fe 2 O 3 и 2-3 CaO.

Алуниты представляют собой основной сульфат алюминия и калия (или натрия) K 2 SO 4 . Al 2 (SO 4) 3 . 4 Al(OH) 3 . Содержание Al 2 O 3 в них невысокое (20-22%), но в них находится другие ценные составляющие: серный ангидрид SO 3 (~ 20%) и щелочь Na 2 O , K 2 O (4-5%). Таким образом, они, так же как и нефелины, представляют собой комплексное сырье.

Другие сырые материалы. При производстве глинозема применяют щелочь NaOH, иногда известняк CaCO 3 , при электролизе глинозема криолит Na 3 AlF 6 (3NaF . AlF 3) и немного фтористого алюминия AlF 3 , а также CaF 2 и MgF 2 .